Redis

Redis介绍

Redis是什么

  • Redis 是一个开源(BSD 许可)的,内存中的数据结构存储系统,它可以用作数据库、缓存和消息中间件

  • Redis 支持多种类型的数据结构,如 字符串(strings),散列(hashes), 列表(lists), 集合(sets), 有序集合(sorted sets) ,范围查询, bitmaps, hyperloglogs 和 地理空间(geospatial) 索引半径查询

  • Redis 内置了复制(replication),LUA 脚本(Lua scripting),LRU 驱动事件(LRU eviction),事务(transactions)和不同级别的 磁盘持久化(persistence)

  • Redis 通过 哨兵(Sentinel) 和自动分区(Cluster)提供高可用性(high availability)

Redis特性

  • 速度快

    • 单节点读 110000次/s,写81000次/s

    • 数据存放内存中

    • 用 C 语言实现,离操作系统更近

    • 单线程架构,6.0 开始支持多线程(CPU、IO 读写负荷)

  • 持久化

    • 数据的更新将异步地保存到硬盘(RDB 和 AOF)

  • 多种数据结构

    • 不仅仅支持简单的 key-value 类型数据,还支持:字符串、hash、列表、集合、有序集合

  • 支持多种编程语言

  • 功能丰富

    • HyperLogLog、GEO、发布订阅、Lua脚本、事务、Pipeline、Bitmaps,key 过期

  • 简单稳定

    • 源码少、单线程模型

  • 主从复制

  • Redis 支持数据的备份(master-slave)与集群(分片存储),以及拥有哨兵监控机制。

  • Redis 的所有操作都是原子性的,同时 Redis 还支持对几个操作合并后的原子性执行。

Redis高并发原理

  • Redis 是纯内存数据库,一般都是简单的存取操作,线程占用的时间很多,时间的花费主要集中在 IO 上,所以读取速度快

  • Redis 使用的是非阻塞 IO,IO 多路复用,使用了单线程来轮询描述符,将数据库的开、关、读、写都转换成了事件,减少了线程切换时上下文的切换和竞争

  • Redis 采用了单线程的模型,保证了每个操作的原子性,也减少了线程的上下文切换和竞争

  • Redis 存储结构多样化,不同的数据结构对数据存储进行了优化,如压缩表,对短数据进行压缩存储,再如,跳表,使用有序的数据结构加快读取的速度

  • Redis 采用自己实现的事件分离器,效率比较高,内部采用非阻塞的执行方式,吞吐能力比较大

Redis数据结构

String类型

也就是字符串类型,是Redis中最简单的存储类型。

其value是字符串,不过根据字符串的格式不同,又可以分为3类:

  • string:普通字符串

  • int:整数类型,可以做自增、自减操作

  • float:浮点类型,可以做自增、自减操作

不管是哪种格式,底层都是字节数组形式存储,只不过是编码方式不同。字符串类型的最大空间不能超过512m.

Hash类型

也叫散列,其value是一个无序字典,类似于Java中的HashMap结构。

List类型

Redis中的List类型与Java中的LinkedList类似,可以看做是一个双向链表结构。既可以支持正向检索和也可以支持反向检索。

特征也与LinkedList类似:

  • 有序

  • 元素可以重复

  • 插入和删除快

  • 查询速度一般

常用来存储一个有序数据,例如:朋友圈点赞列表,评论列表等。

Set类型

Redis的Set结构与Java中的HashSet类似,可以看做是一个value为null的HashMap。因为也是一个hash表,因此具备与HashSet类似的特征:

  • 无序

  • 元素不可重复

  • 查找快

  • 支持交集、并集、差集等功能

SortedSet类型

Redis的SortedSet是一个可排序的set集合,与Java中的TreeSet有些类似,但底层数据结构却差别很大。SortedSet中的每一个元素都带有一个score属性,可以基于score属性对元素排序,底层的实现是一个跳表(SkipList)加 hash表。

SortedSet具备下列特性:

  • 可排序

  • 元素不重复

  • 查询速度快

因为SortedSet的可排序特性,经常被用来实现排行榜这样的功能。

SpringBoot整合Redis

SpringDataRedis客户端的官网地址:https://spring.io/projects/spring-data-redis

SpringDataRedis特性:

  • 提供了对不同Redis客户端的整合(Lettuce和Jedis)

  • 提供了RedisTemplate统一API来操作Redis

  • 支持Redis的发布订阅模型

  • 支持Redis哨兵和Redis集群

  • 支持基于Lettuce的响应式编程

  • 支持基于JDK、JSON、字符串、Spring对象的数据序列化及反序列化

  • 支持基于Redis的JDKCollection实现

整合步骤:

  • 引入依赖

		<!--redis依赖-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>
        <!--common-pool-->
        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-pool2</artifactId>
        </dependency>
  • 配置Redis

spring:
  redis:
    host: 192.168.150.101
    port: 6379
    password: 123321
    lettuce:
      pool:
        max-active: 8
        max-idle: 8
        min-idle: 0
        max-wait: 100ms
  • 注入RedisTemplate

@SpringBootTest
class RedisStringTests {

    @Autowired
    private RedisTemplate redisTemplate;
}
  • 编写测试

@SpringBootTest
class RedisStringTests {

    @Autowired
    private RedisTemplate edisTemplate;

    @Test
    void testString() {
        // 写入一条String数据
        redisTemplate.opsForValue().set("name", "虎哥");
        // 获取string数据
        Object name = stringRedisTemplate.opsForValue().get("name");
        System.out.println("name = " + name);
    }
}

Redis最佳实践

Redis键值设计

优雅的key结构

Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:

  • 遵循基本格式:[业务名称]:[数据名]:[id]

  • 长度不超过44字节

  • 不包含特殊字符

例如:我们的登录业务,保存用户信息,其key可以设计成如下格式:

这样设计的好处:

  • 可读性强

  • 避免key冲突

  • 方便管理

  • 更节省内存: key是string类型,底层编码包含int、embstr和raw三种。embstr在小于44字节使用,采用连续内存空间,内存占用更小。当字节数大于44字节时,会转为raw模式存储,在raw模式下,内存空间不是连续的,而是采用一个指针指向了另外一段内存空间,在这段空间里存储SDS内容,这样空间不连续,访问的时候性能也就会收到影响,还有可能产生内存碎片

拒绝BigKey

BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:

  • Key本身的数据量过大:一个String类型的Key,它的值为5 MB

  • Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个

  • Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB

那么如何判断元素的大小呢?redis也给我们提供了命令

推荐值:

  • 单个key的value小于10KB

  • 对于集合类型的key,建议元素数量小于1000

BigKey的危害
  • 网络阻塞

    • 对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢

  • 数据倾斜

    • BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡

  • Redis阻塞

    • 对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞

  • CPU压力

    • 对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用

如何发现BigKey

①redis-cli --bigkeys

利用redis-cli提供的--bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key

命令:redis-cli -a 密码 --bigkeys

②scan扫描

自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)

scan 命令调用完后每次会返回2个元素,第一个是下一次迭代的光标,第一次光标会设置为0,当最后一次scan 返回的光标等于0时,表示整个scan遍历结束了,第二个返回的是List,一个匹配的key的数组

import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.ScanResult;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class JedisTest {
    private Jedis jedis;

    @BeforeEach
    void setUp() {
        // 1.建立连接
        // jedis = new Jedis("192.168.150.101", 6379);
        jedis = JedisConnectionFactory.getJedis();
        // 2.设置密码
        jedis.auth("123321");
        // 3.选择库
        jedis.select(0);
    }

    final static int STR_MAX_LEN = 10 * 1024;
    final static int HASH_MAX_LEN = 500;

    @Test
    void testScan() {
        int maxLen = 0;
        long len = 0;

        String cursor = "0";
        do {
            // 扫描并获取一部分key
            ScanResult<String> result = jedis.scan(cursor);
            // 记录cursor
            cursor = result.getCursor();
            List<String> list = result.getResult();
            if (list == null || list.isEmpty()) {
                break;
            }
            // 遍历
            for (String key : list) {
                // 判断key的类型
                String type = jedis.type(key);
                switch (type) {
                    case "string":
                        len = jedis.strlen(key);
                        maxLen = STR_MAX_LEN;
                        break;
                    case "hash":
                        len = jedis.hlen(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "list":
                        len = jedis.llen(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "set":
                        len = jedis.scard(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "zset":
                        len = jedis.zcard(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    default:
                        break;
                }
                if (len >= maxLen) {
                    System.out.printf("Found big key : %s, type: %s, length or size: %d %n", key, type, len);
                }
            }
        } while (!cursor.equals("0"));
    }
    
    @AfterEach
    void tearDown() {
        if (jedis != null) {
            jedis.close();
        }
    }

}

③第三方工具

④网络监控

  • 自定义工具,监控进出Redis的网络数据,超出预警值时主动告警

  • 一般阿里云搭建的云服务器就有相关监控页面

如何删除BigKey

BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。

  • redis 3.0 及以下版本

    • 如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey

  • Redis 4.0以后

    • Redis在4.0后提供了异步删除的命令:unlink

恰当的数据类型

比如存储一个User对象,我们有三种存储方式:

①方式一:json字符串

user:1

{"name": "Jack", "age": 21}

优点:实现简单粗暴

缺点:数据耦合,不够灵活

②方式二:字段打散

user:1:name

Jack

user:1:age

21

优点:可以灵活访问对象任意字段

缺点:占用空间大、没办法做统一控制

③方式三:hash(推荐)

user:1

name

jack

age

21

优点:底层使用ziplist,空间占用小,可以灵活访问对象的任意字段

缺点:代码相对复杂

假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?

key

field

value

someKey

id:0

value0

.....

.....

id:999999

value999999

存在的问题:

  • hash的entry数量超过500时,会使用哈希表而不是ZipList,内存占用较多

  • 可以通过hash-max-ziplist-entries配置entry上限。但是如果entry过多就会导致BigKey问题

方案一

拆分为string类型

key

value

id:0

value0

.....

.....

id:999999

value999999

存在的问题:

  • string结构底层没有太多内存优化,内存占用较多

方案二

拆分为小的hash,将 id / 100 作为key, 将id % 100 作为field,这样每100个元素为一个Hash

key

field

value

key:0

id:00

value0

.....

.....

id:99

value99

key:1

id:00

value100

.....

.....

id:99

value199

....

key:9999

id:00

value999900

.....

.....

id:99

value999999

import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ScanResult;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class JedisTest {
    private Jedis jedis;

    @BeforeEach
    void setUp() {
        // 1.建立连接
        // jedis = new Jedis("192.168.150.101", 6379);
        jedis = JedisConnectionFactory.getJedis();
        // 2.设置密码
        jedis.auth("123321");
        // 3.选择库
        jedis.select(0);
    }

    @Test
    void testSetBigKey() {
        Map<String, String> map = new HashMap<>();
        for (int i = 1; i <= 650; i++) {
            map.put("hello_" + i, "world!");
        }
        jedis.hmset("m2", map);
    }

    @Test
    void testBigHash() {
        Map<String, String> map = new HashMap<>();
        for (int i = 1; i <= 100000; i++) {
            map.put("key_" + i, "value_" + i);
        }
        jedis.hmset("test:big:hash", map);
    }

    @Test
    void testBigString() {
        for (int i = 1; i <= 100000; i++) {
            jedis.set("test:str:key_" + i, "value_" + i);
        }
    }

    @Test
    void testSmallHash() {
        int hashSize = 100;
        Map<String, String> map = new HashMap<>(hashSize);
        for (int i = 1; i <= 100000; i++) {
            int k = (i - 1) / hashSize;
            int v = i % hashSize;
            map.put("key_" + v, "value_" + v);
            if (v == 0) {
                jedis.hmset("test:small:hash_" + k, map);
            }
        }
    }

    @AfterEach
    void tearDown() {
        if (jedis != null) {
            jedis.close();
        }
    }
}

批处理优化

Pipeline

我们的客户端与redis服务器是这样交互的

单个命令的执行流程

N条命令的执行流程

redis处理指令是很快的,主要花费的时候在于网络传输。于是乎很容易想到将多条指令批量的传输给redis

MSet

Redis提供了很多Mxxx这样的命令,可以实现批量插入数据,例如:

  • mset

  • hmset

利用mset批量插入10万条数据

@Test
void testMxx() {
    String[] arr = new String[2000];
    int j;
    long b = System.currentTimeMillis();
    for (int i = 1; i <= 100000; i++) {
        j = (i % 1000) << 1;
        arr[j] = "test:key_" + i;
        arr[j + 1] = "value_" + i;
        if (j == 0) {
            jedis.mset(arr);
        }
    }
    long e = System.currentTimeMillis();
    System.out.println("time: " + (e - b));
}
Pipeline

MSET虽然可以批处理,但是却只能操作部分数据类型,因此如果有对复杂数据类型的批处理需要,建议使用Pipeline

@Test
void testPipeline() {
    // 创建管道
    Pipeline pipeline = jedis.pipelined();
    long b = System.currentTimeMillis();
    for (int i = 1; i <= 100000; i++) {
        // 放入命令到管道
        pipeline.set("test:key_" + i, "value_" + i);
        if (i % 1000 == 0) {
            // 每放入1000条命令,批量执行
            pipeline.sync();
        }
    }
    long e = System.currentTimeMillis();
    System.out.println("time: " + (e - b));
}

集群下的批处理

如MSET或Pipeline这样的批处理需要在一次请求中携带多条命令,而此时如果Redis是一个集群,那批处理命令的多个key必须落在一个插槽中,否则就会导致执行失败。大家可以想一想这样的要求其实很难实现,因为我们在批处理时,可能一次要插入很多条数据,这些数据很有可能不会都落在相同的节点上,这就会导致报错了

这个时候,我们可以找到4种解决方案

第一种方案:串行执行,所以这种方式没有什么意义,当然,执行起来就很简单了,缺点就是耗时过久。

第二种方案:串行slot,简单来说,就是执行前,客户端先计算一下对应的key的slot,一样slot的key就放到一个组里边,不同的,就放到不同的组里边,然后对每个组执行pipeline的批处理,他就能串行执行各个组的命令,这种做法比第一种方法耗时要少,但是缺点呢,相对来说复杂一点,所以这种方案还需要优化一下

第三种方案:并行slot,相较于第二种方案,在分组完成后串行执行,第三种方案,就变成了并行执行各个命令,所以他的耗时就非常短,但是实现呢,也更加复杂。

第四种:hash_tag,redis计算key的slot的时候,其实是根据key的有效部分来计算的,通过这种方式就能一次处理所有的key,这种方式耗时最短,实现也简单,但是如果通过操作key的有效部分,那么就会导致所有的key都落在一个节点上,产生数据倾斜的问题,所以我们推荐使用第三种方式。

串行化执行代码实践:

public class JedisClusterTest {

    private JedisCluster jedisCluster;

    @BeforeEach
    void setUp() {
        // 配置连接池
        JedisPoolConfig poolConfig = new JedisPoolConfig();
        poolConfig.setMaxTotal(8);
        poolConfig.setMaxIdle(8);
        poolConfig.setMinIdle(0);
        poolConfig.setMaxWaitMillis(1000);
        HashSet<HostAndPort> nodes = new HashSet<>();
        nodes.add(new HostAndPort("192.168.150.101", 7001));
        nodes.add(new HostAndPort("192.168.150.101", 7002));
        nodes.add(new HostAndPort("192.168.150.101", 7003));
        nodes.add(new HostAndPort("192.168.150.101", 8001));
        nodes.add(new HostAndPort("192.168.150.101", 8002));
        nodes.add(new HostAndPort("192.168.150.101", 8003));
        jedisCluster = new JedisCluster(nodes, poolConfig);
    }

    @Test
    void testMSet() {
        jedisCluster.mset("name", "Jack", "age", "21", "sex", "male");

    }

    @Test
    void testMSet2() {
        Map<String, String> map = new HashMap<>(3);
        map.put("name", "Jack");
        map.put("age", "21");
        map.put("sex", "Male");
        //对Map数据进行分组。根据相同的slot放在一个分组
        //key就是slot,value就是一个组
        Map<Integer, List<Map.Entry<String, String>>> result = map.entrySet()
                .stream()
                .collect(Collectors.groupingBy(
                        entry -> ClusterSlotHashUtil.calculateSlot(entry.getKey()))
                );
        //串行的去执行mset的逻辑
        for (List<Map.Entry<String, String>> list : result.values()) {
            String[] arr = new String[list.size() * 2];
            int j = 0;
            for (int i = 0; i < list.size(); i++) {
                j = i<<2;
                Map.Entry<String, String> e = list.get(0);
                arr[j] = e.getKey();
                arr[j + 1] = e.getValue();
            }
            jedisCluster.mset(arr);
        }
    }

    @AfterEach
    void tearDown() {
        if (jedisCluster != null) {
            jedisCluster.close();
        }
    }
}

Spring集群环境下批处理代码:

   @Test
    void testMSetInCluster() {
        Map<String, String> map = new HashMap<>(3);
        map.put("name", "Rose");
        map.put("age", "21");
        map.put("sex", "Female");
        stringRedisTemplate.opsForValue().multiSet(map);


        List<String> strings = stringRedisTemplate.opsForValue().multiGet(Arrays.asList("name", "age", "sex"));
        strings.forEach(System.out::println);

    }

原理分析

在RedisAdvancedClusterAsyncCommandsImpl 类中

首先根据slotHash算出来一个partitioned的map,map中的key就是slot,而他的value就是对应的对应相同slot的key对应的数据

通过 RedisFuture<String> mset = super.mset(op);进行异步的消息发送

@Override
public RedisFuture<String> mset(Map<K, V> map) {

    Map<Integer, List<K>> partitioned = SlotHash.partition(codec, map.keySet());

    if (partitioned.size() < 2) {
        return super.mset(map);
    }

    Map<Integer, RedisFuture<String>> executions = new HashMap<>();

    for (Map.Entry<Integer, List<K>> entry : partitioned.entrySet()) {

        Map<K, V> op = new HashMap<>();
        entry.getValue().forEach(k -> op.put(k, map.get(k)));

        RedisFuture<String> mset = super.mset(op);
        executions.put(entry.getKey(), mset);
    }

    return MultiNodeExecution.firstOfAsync(executions);
}

服务器端优化

持久化配置

Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议:

  • 用来做缓存的Redis实例尽量不要开启持久化功能

  • 建议关闭RDB持久化功能,使用AOF持久化

  • 利用脚本定期在slave节点做RDB,实现数据备份

  • 设置合理的rewrite阈值,避免频繁的bgrewrite

  • 配置no-appendfsync-on-rewrite = yes,禁止在rewrite期间做aof,避免因AOF引起的阻塞

  • 部署有关建议:

    • Redis实例的物理机要预留足够内存,应对fork和rewrite

    • 单个Redis实例内存上限不要太大,例如4G或8G。可以加快fork的速度、减少主从同步、数据迁移压力

    • 不要与CPU密集型应用部署在一起

    • 不要与高硬盘负载应用一起部署。例如:数据库、消息队列

慢查询优化

并不是很慢的查询才是慢查询,而是:在Redis执行时耗时超过某个阈值的命令,称为慢查询。

慢查询的危害:由于Redis是单线程的,所以当客户端发出指令后,他们都会进入到redis底层的queue来执行,如果此时有一些慢查询的数据,就会导致大量请求阻塞,从而引起报错,所以我们需要解决慢查询问题。

慢查询的阈值可以通过配置指定:

slowlog-log-slower-than:慢查询阈值,单位是微秒。默认是10000,建议1000

慢查询会被放入慢查询日志中,日志的长度有上限,可以通过配置指定:

slowlog-max-len:慢查询日志(本质是一个队列)的长度。默认是128,建议1000

修改这两个配置可以使用:config set命令:

知道了以上内容之后,那么如何去查看慢查询日志列表呢:

  • slowlog len:查询慢查询日志长度

  • slowlog get [n]:读取n条慢查询日志

  • slowlog reset:清空慢查询列表

Redis内存划分和内存配置

当Redis内存不足时,可能导致Key频繁被删除、响应时间变长、QPS不稳定等问题。当内存使用率达到90%以上时就需要我们警惕,并快速定位到内存占用的原因。

有关碎片问题分析

Redis底层分配并不是这个key有多大,他就会分配多大,而是有他自己的分配策略,比如8,16,20等等,假定当前key只需要10个字节,此时分配8肯定不够,那么他就会分配16个字节,多出来的6个字节就不能被使用,这就是我们常说的 碎片问题

进程内存问题分析:

这片内存,通常我们都可以忽略不计

缓冲区内存问题分析:

一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,所以这片内存也是我们需要重点分析的内存问题。

内存占用

说明

数据内存

是Redis最主要的部分,存储Redis的键值信息。主要问题是BigKey问题、内存碎片问题

进程内存

Redis主进程本身运⾏肯定需要占⽤内存,如代码、常量池等等;这部分内存⼤约⼏兆,在⼤多数⽣产环境中与Redis数据占⽤的内存相⽐可以忽略。

缓冲区内存

一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,不当使用BigKey,可能导致内存溢出。

于是我们就需要通过一些命令,可以查看到Redis目前的内存分配状态:

  • info memory:查看内存分配的情况

  • memory xxx:查看key的主要占用情况

接下来我们看到了这些配置,最关键的缓存区内存如何定位和解决呢?

内存缓冲区常见的有三种:

  • 复制缓冲区:主从复制的repl_backlog_buf,如果太小可能导致频繁的全量复制,影响性能。通过replbacklog-size来设置,默认1mb

  • AOF缓冲区:AOF刷盘之前的缓存区域,AOF执行rewrite的缓冲区。无法设置容量上限

  • 客户端缓冲区:分为输入缓冲区和输出缓冲区,输入缓冲区最大1G且不能设置。输出缓冲区可以设置

以上复制缓冲区和AOF缓冲区 不会有问题,最关键就是客户端缓冲区的问题

客户端缓冲区:指的就是我们发送命令时,客户端用来缓存命令的一个缓冲区,也就是我们向redis输入数据的输入端缓冲区和redis向客户端返回数据的响应缓存区,输入缓冲区最大1G且不能设置,所以这一块我们根本不用担心,如果超过了这个空间,redis会直接断开,因为本来此时此刻就代表着redis处理不过来了,我们需要担心的就是输出端缓冲区

我们在使用redis过程中,处理大量的big value,那么会导致我们的输出结果过多,如果输出缓存区过大,会导致redis直接断开,而默认配置的情况下, 其实他是没有大小的,这就比较坑了,内存可能一下子被占满,会直接导致咱们的redis断开,所以解决方案有两个

1、设置一个大小

2、增加我们带宽的大小,避免我们出现大量数据从而直接超过了redis的承受能力

集群还是主从

集群虽然具备高可用特性,能实现自动故障恢复,但是如果使用不当,也会存在一些问题:

  • 集群完整性问题

  • 集群带宽问题

  • 数据倾斜问题

  • 客户端性能问题

  • 命令的集群兼容性问题

  • lua和事务问题

问题1、在Redis的默认配置中,如果发现任意一个插槽不可用,则整个集群都会停止对外服务:

大家可以设想一下,如果有几个slot不能使用,那么此时整个集群都不能用了,我们在开发中,其实最重要的是可用性,所以需要把如下配置修改成no,即有slot不能使用时,我们的redis集群还是可以对外提供服务

问题2、集群带宽问题

集群节点之间会不断的互相Ping来确定集群中其它节点的状态。每次Ping携带的信息至少包括:

  • 插槽信息

  • 集群状态信息

集群中节点越多,集群状态信息数据量也越大,10个节点的相关信息可能达到1kb,此时每次集群互通需要的带宽会非常高,这样会导致集群中大量的带宽都会被ping信息所占用,这是一个非常可怕的问题,所以我们需要去解决这样的问题

解决途径:

  • 避免大集群,集群节点数不要太多,最好少于1000,如果业务庞大,则建立多个集群。

  • 避免在单个物理机中运行太多Redis实例

  • 配置合适的cluster-node-timeout值

问题3、命令的集群兼容性问题

有关这个问题咱们已经探讨过了,当我们使用批处理的命令时,redis要求我们的key必须落在相同的slot上,然后大量的key同时操作时,是无法完成的,所以客户端必须要对这样的数据进行处理,这些方案我们之前已经探讨过了,所以不再这个地方赘述了。

问题4、lua和事务的问题

lua和事务都是要保证原子性问题,如果你的key不在一个节点,那么是无法保证lua的执行和事务的特性的,所以在集群模式是没有办法执行lua和事务的

那我们到底是集群还是主从

单体Redis(主从Redis)已经能达到万级别的QPS,并且也具备很强的高可用特性。如果主从能满足业务需求的情况下,所以如果不是在万不得已的情况下,尽量不搭建Redis集群

LICENSED UNDER CC BY-NC-SA 4.0
Comment